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A non-linear analysis of cellular convection driven by surface tension in a semi- 
infinite liquid layer heated from below has been made. The purpose is to deter- 
mine whether or not one can predict the emergence of the hexagonal flow pattern 
from the interaction of a certain large class of important disturbances. The 
principal conclusion is that, compared with gravity driven convection, there is 
generally a much greater band of imposed temperature difference associated with 
hexagonal convective patterns. Partial results for the more realistic assumption 
of finite depth support this conclusion. 

. ~ ~~ ~ 

1. Introduction 
In  the past fifty years, beginning with Lord Rayleigh’s analysis of the pheno- 

menon, a great deal of effort has been expended treating cellular convection as 
a buoyancy driven flow. Despite generally impressive qualitative agreement 
between theory and various observations, this approach has not been satisfactory 
in describing Bdnard’s classic experiments which motivated the original theo- 
retical investigations. Working with thin horizontal liquid layers heated from 
below, with the upper surface free to the atmosphere, Bdnard observed that 
motion occurred only when a critical temperature gradient was exceeded, and 
that the stable secondary flow pattern was one of contiguous hexagonal cells. 

The inappropriateness of Rayleigh’s model to BBnard’s experiments was not 
adequately explained until more recent experimental and analytical studies by 
Block (1956), Pearson (1958) and Nield (1964) showed that, rather than being a 
buoyancy driven flow, BBnard cells are primarily induced by the surface tension 
gradients resulting from temperature variations across the free surface. Nield 
accounted for both mechanisms in his analysis and found that at the onset of 
convection the driving force for the motion is approximately equal to the sum 
of the surface and buoyancy forces in the layer and, furthermore, as the depth of 
the layer decreases the surface tension mechanism becomes more dominant. 
For the thin (about 1 mm) layers used in BBnard’s experiments the flow is due 
mainly to surface tension effects. 

Although it does not describe BBnard’s work, Rayleigh’s theory is an appro- 
priate model for similar situations where there is no free surface or, for most fluids, 
when the fluid layer is thicker than about 1 em. 

All the theoretical investigations of the surface mechanism cited above are 
linear stability analyses. The linear theory predicts the critical temperature 
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gradient at  which motion first occurs and the wave-number of the fastest 
growing disturbance. It does not specify the final size or shape of the cell or how 
the initial growing disturbances reach a finite steady-state amplitude. This 
information is essential if one is to understand the secondary steady flow field and 
can only be obtained by considering the non-linear theory. 

The purpose of our investigation is to elucidate the non-linear behaviour of the 
surface tension mechanism. The problem of cell size is not considered here. We 
are concerned with the question of whether or not one can predict the emergence 
of the hexagonal flow pattern from the interaction of a certain large class of 
important disturbances. Since the calculations required for a non-linear analysis 
of this type can be inordinately long, we have used as our primary model the 
limiting case of infinite Prandtl number and semi-infinite liquid phase. 

It may seem surprising that a semi-infinite model is used to describe a thin 
layer of liquid. A two-part argument supports this step. (i) In  very thin layers 
convection is driven primarily by surface forces so, to a first approximation, 
buoyancy effects may be neglected. (ii) Consider then an instability due entirely 
to surface tension gradients. By continuity, surface motion requires motion of 
the adjacent bulk phase. Replacing a layer of finite thickness by a semi-infinite 
layer will only roughly model the bulk motion. However, qualitative agreement 
can still be expected because the surface motion which drives the flow is well 
modelled. Properly interpreted the semi-infinite model should retain the essential 
characteristics of the physical problem. This is confirmed by our partial results 
for the finite depth layer. 

The analysis is carried out using a modified successive approximation technique 
based on the Stuart-Watson (1960) approach to non-linear stability problems. 
The particular formulation given here is explained in detail by Segel (1965a) 
for a model equation and has been applied to the problem of buoyancy driven 
convection by Davis & Segel (1965). In  adapting these methods to the surface 
dominated problem the chief mathematical difficulty is connected with the fact 
that in the linearized problem the eigenvalue appears in the surface boundary 
condition. 

2. Formulation 
Consider a semi-infinite horizontal liquid layer which is unbounded in the 

horizontal (x, y) directions and extends to z = - 00 in the vertical z direction. The 
undisturbed system whose stability we shall study is a quiescent fluid with a free 
surface at z = 0 and a constant temperature gradient, - /3, in the z direction. The 
perturbation temperature is T, the perturbed surface is given by x = E(x, y) and 
(u, w, w) are velocity components in the (x, y, z )  directions. 

Physical variables are scaled using d ,  d2/K, K}d and p d  as the length, time, 
velocity and temperature scale factors respectively. Here K is thermal diffusivity 
and d is the characteristic length usually taken to be the depth of the layer. 
Because of the infinite depth in this model no specific length scale is chosen, 
d being left arbitrary for now. 

The stability problem is formulated in the usual manner. The solution to the 
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general equations governing the system is assumed to be the quiescent solution 
plus a perturbation. Substitution into the full momentum, energy and con- 
tinuity equations gives the non-linear partial differential equations for the 
perturbation quantities, 

DT 
Dt 

V ~ T + W  = -, 

where V ;  = a2/ax2+ a2/ay2, V = (a/ax, spy, a/&), u = (u, V ,  w ) ,  

V 2  = V2,+ a2/az2, N = U . V, D/Dt = a/a t+N,  Npr = Prandtlnumber. 

The perturbation equations are presented in the form which best lends itself 
to an iteration scheme based on the linear theory. Equation (1) is obtained by 
combining the momentum and continuity equations to eliminate u and v from 
the linear terms and to eliminate pressure entirely. Other eliminations give the 
expressions needed to determine u and v, namely: 

In  the analysis it turns out that the terms on the right side of (3) and (4) do not 
contribute to the solution for the disturbances considered in the iteration scheme 
and can be neglected. Therefore (V~,U+W,,) and (Vfv+ wyz) are harmonic. Using 
the continuity equation and boundary conditions these functions can be shown 
to be zero at  a rigid surface and to have zero normal derivatives at the free 
surface. Assuming appropriate boundedness of the solutions everywhere in the 
layer, it follows from the uniqueness of such harmonic functions that 

v2u = - wzz, 

v ; v  = - wzy. 
1 

It is clear from inspection of (1) that the calculations could be appreciably 
simplified if Npr was taken to be infinite. Preliminary calculations assuming a 
finite Npr and experience with other convection problems indicate that Npr 
typically appears in the combination Npr( 1 + NPr)-l. We therefore expect the 
infinite Prandtl number solution to  be a good approximation for NPr > 5. Most 
liquids used in experiments are within this range; many have Prandtl numbers 
in the hundreds, or even thousands. For the present, therefore, we shall use the 
infinite Prandtl number equations (see Bray 1966): 

v4w = 0,  

V2T + U) = DT/Dt,  

.along with (5) and (6) for u and v .  Now the only non-linear terms are those 
appearing in the energy equation. 
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For a surface driven flow an essential feature of the formulation is the estab- 
lishment of boundary conditions a t  the interface z = E(x,y). Pearson f i s t  
formulated and analysed the surface tension mechanism for the BBnard problem 
using a simple idealized model, a non-deforming free surface with a general heat 
transfer condition. Subsequent investigations have extended Pearson’s model to 
include the effects of surface deformation, elasticity, and viscosity and the 
dynamics of the upper phase. Although there are situations in which such effects 
would greatly influence stability, these linear analyses indicate that for most 
experiment,s the upper phase, surface viscosity, and surface elasticity have little 
effect on the critical conditions a t  marginal stability. In  a qualitative study of 
the non-linear problem it is justifiable to neglect them. 

The consideration of surface deflexion, on the other hand, is important for 
two reasons. First, it  has a destabilizing effect on the system and, secondly, it  
gives a criterion for determining the driving mechanism. A major conflict between 
Rayleigh’s theory and experiments concerned the flow field. BBnard observed 
warm fluid rising below the depressions in the free surface, whereas Jeffreys 
(1951) proved that in a buoyancy driven flow the free surface over rising fluid is 
elevated. Davis (1964) and Sternling & Scriven (1964) independently explained 
this conflict by showing that for surface driven flows the free surface above 
a rising current is depressed as the experiments indicate. 

For our model the infinite N,, assumption, which linearizes the momentum 
equation, also results in a simplification of the boundary conditions. It can be 
verified that, because the momentum equation is linear and the depth infinite, the 
surface deformation E(x,y) is zero at all orders of perturbation. Therefore 
Pearson’s formulation will be used to describe the free surface of the semi-infinite 
layer; only his notation is changed. 

Since the surface heat transfer process is not easily describable, Pearson 
assumed a constant heat transfer coefficient NNu and considered the general 
condition T,+N,,T = 0 at z = 0. 

He found that the stability of the system increases slowly with NNu and estimated 
that for BBnard’s experiments NNu < 1. For our purposes it suffices to take 
NNu = 0. The kinematic condition for a non-deforming surface is w = 0. 

A third boundary condition is found by making a horizontal force balance a t  
the surface. Surface tension S is assumed to vary linearly with temperature: 
S = So - crT. Equating the net surface tension force due to temperature varia- 
tions with the viscous shear force at the surface gives, after some manipdation 
with the continuity equation, 

at  z = 0, 

NMa = CT/%!2/f3VK. 

The Marangoni number N M ,  contains the undisturbed temperature gradient /? 
and therefore its magnitude will govern the stability of the system. Since CT is 
positive for most liquids, a positive NMa would correspond to a negative gradient, 
- p ,  in the undisturbed system. When, as here, the upper phase is ignored, 
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instability of the motionless layer is expected for a sufficiently large positive 
Marangoni number (Smith 1966). 

is zero; consequently, the normal surface stress condi- 
tion is automatically satisfied. The boundary conditions are completed by taking 
w and the derivatives of w and T to be bounded as z + - 03. 

Surface deformation 

3. Solution 
To solve the non-linear problem we shall utilize the successive approximation 

method mentioned above. This is most efficiently done if one writes the steady- 
state linearized equations in operator form as an eigenvalue problem with N,, 
as the eigenvalue. The reader is referred to Friedman (1956) for a vector formula- 
tion of a boundary-value problem, with an ordinary differential equation, 
having the eigenvalue in one of the boundary conditions. Generalizing to a system 
of partial differential equations, let the vector U be a 3-vector whose first two 
components are functions of the space variables and time and whose third com- 
ponent, a function of x ,  y and t ,  is evaluated at the surface: 

We define an inner product of two such vectors 

For periodic cellular motion, the ( x ,  y) integration may be taken over a single cell. 
Our problem can now be considered as the determination of the solution to 

subject to the boundary conditions 

(12) 
w = T , = O  at z = O ,  

w, we, T, bounded as z-+ - co. 

We define the operators 9, 
equation (11) may be written 

and Jlr in the obvious way so that the vector 

2 ( U )  = Jlr (U) + N,, JW), (13) 

where 9 ( U )  contains all linear steady-state terms and N ( U )  contains all non- 
linear terms and time derivatives. 

A linear analysis can be considered as the first step in any stability theory. 
By applying the principle of exchange of stabilities (see Vidal & Acrivos 1966) 
and assuming infinitesimal disturbances we can neglect N ( U )  in equation (13), 
thereby obtaining the linear problem for marginal stability (a/at = 0) : 

9 ( U J  -%fa A(U1) = 0, (14) 
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subject to the boundary conditions (12). The characteristic equation for this 
eigenvalue problem specifies the critical Marangoni number N S ,  and critical 
wave number a,. According to linear theory, if NMa > #La, the quiescent layer is 
unstable and the fastest growing disturbance has a wave number a,. 

Solutions to the non-linear problem, which we expect to be small for all time 
when INM, - N k a (  is sufficiently small, can be obtained by means of an iteration 
scheme with the eigenvector U, as the first approximation. Equation (13) is 
rearranged and written as 

[ ~ - N k a ~ ] ( U n + l )  =IIJ+(NMa-Nk:)d](Un) (n= 1,2, *.*). ( l5 )  

Boundary conditions (12) are imposed at each stage and equations (5) and (6) are 
used to determine u and v in N(Un).  

The main point of interest is whether or not hexagonal cells are a stable 
secondary flow. Consequently, the initial disturbance is taken to be proportional 
to a function q5 which contains two primary horizontal space modes of the same 
overall wave-number a; namely, 

$b = Z(t)cosay+ Y( t ) cos~1 /3a~cos~ay .  

It is known (see Chandrasekhar 1961) that hexagonal cells occur if the amplitude 
functions Y(t)  and 2(t) have equilibrium solutions which satisfy the relationship 
Y = _+ 22. If this relationship can be shown ultimately to hold regardless of the 
initial values of Y and 2, then a step will have been taken in predicting the 
emergence of hexagonal cells. 

Solutions to the linear problem (14) are assumed to be of the form 

where 

Separating variables reduces (14) to a pair of ordinary differential equations in z 
for w1 and TI: 

(02- a2)2W1 = 0, D aidx, 

( D ~ - C ~ ' ) T I + W ~  = 0, 

D2w, = - a2NSaTI, at z = 0. 

The solution is, after imposing the boundary conditions (12), 

T, = - C(4a3)-l (a2z2 - az + 1) e'. w, = Cz euB, 

C is an arbitrary constant which we shall incorporate into the amplitudes Y and 
2 in U,. 

The critical Marangoni number is given by N L ,  = 8a2. According to linear 
theory then, a disturbance with a, = 0,  corresponding to infinite wavelength, is 
always un.stable. That the critical wavelength is infinite is not surprising since 
from experimental observation one expects a critical wavelength comparable to 
the depth of the layer. 
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An interpretation of the critical Marangoni number for a semi-infinite layer 
which permits quantitative comparison with results for a layer having finite 
depth can be made by using the disturbance wavelength as the length scale d. 
Since overall cell wavelength and layer depth are expected to be of the same 
magnitude, similar results should be obtained for both models when scaled in 
this manner. In  dimensional variables the wave-number and wavelength are 
a and h respectively. For the linear analysis above, the dimensionless wave- 
number a was used, where a = ad. With a length scale d given by 

a = a-1 = ~ / 2 n ,  

NLa based on the disturbance wavelength is 

N",, = (o /3hZ /pv~)  = 32n2 

for the semi-infinite layer. The calculations for a layer of finite depth (see below) 
give, at the critical wavelength A,, 

N h a  = (g/3A,?/pv~) = 8 0 7 ~ ~ .  

Our infinite depth result of 32n2 is an underestimate, as would be expected for 
a model which ignores the stabilizing effect of the lower rigid boundary. 

Corrections to the linear theory are found by solving the linear inhomogeneous 
equation (15) for U7L+1 using the method of undetermined coefficients. It is well 
known that if solutions to this equation are to exist, the inhomogeneous term 
[M + (NMu - N k a )  A] (U,) must be orthogonal to the eigenfunctions U" of the 
linear adjoint problem (see appendix for details). Until now no conditions have 
been imposed on the amplitude functions Y ( t )  and Z ( t )  but it turns out that the 
existence condition requires that they satisfy 

Y' = 8Y-yYZ-RY3-PYyZ2+ ..., (16 a )  

8' = E Z - - Y Y ~ - R ~ Z ~ - - P Y ' Z + . . . ,  (16 b )  
P = 4 ~ - R , ,  1 = slat. 

This pair of coupled ordinary differential equations describes the behaviour in 
in time of the orginal disturbance. 

If B and y are small, the amplitude equations can be truncated at  third order, 
the higher order terms being negligible. The qualitative behaviour of solutions 
to (16) is discussed in the appendix. 

4. Conclusions 

case of infinite depth and infinite Prandtl number they are 
The constants 8, y, P, R and R, are fixed by the existence condition. For the 

(17) I 8 = +(NMu-Nba) ,  
y = (0*1296), 

P = (0*06135)01-~ 

R = (0.02970)a-2, 

R, = ( 0 * 0 5 7 4 5 ) ~ ~ - ~ ,  

N k U  = 8a2. 

If (NMa - NGa) is small, inspection of (16) and (1 7)  indicates that the conditions 
necessary for truncation are met. 
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Since ac = 0, it  is at first unsettling that the factor a-2 appears in the third- 
order coeflicients given in (17). However, we have seen that the appropriate 
length scale for the semi-infinite model is the disturbance wavelength. The 
quantity a-2 disappears when this length scale is used. 

The form of the amplitude equations obtained here is exactly that obtained by 
Segel & Stuart (1962) in their analysis of buoyancy driven flows. More recently 
Segel (19656) showed that once the coefficients in equation (16) are obtained, 
one can determine the final equilibrium states which result from the interaction 
of any finite number of modes associated with the same overall wave-number (see 
appendix). 

t 
Rolls 
Hexagons, rolls i 2 < 196 
Hexagons 0 < A N M ~  < 64 

Hexagons, no motion - 0-023 < ANM, < 0 
No motion A N M ~  < - 0.023 

ANM, = (NMa-Nba)/Nbu 

TABLE 1. Stable flows for various ranges of NM, 
(infinite Prandtl number, infinite depth) 

Segel’s results, restated for the surface driven flow, are given in table 1. The 
stable equilibrium solutions are shown for different ranges of the Marangoni 
number. Below the solid line at IN,, - NC,,] = 0 the motionless state is stable 
according to linear theory. ‘Rolls ’ refers to a two-dimensional pattern of vortices 
whose regularly spaced axes are parallel to each other and to the bounding planes. 
In  ranges where two cell patterns are possible the steady flow field would be 
determined by the initial conditions. 

From table 1 a principal formal conclusion of our analysis is that the hexagonal 
pattern is stable for a range of Marangoni number from just below critical to 
64 times critical. Referring to (13) it is clear that the iteration scheme used to 
solve the non-linear problem requires sufficiently small non-linear terms and 
hence sufficiently small (NM, - NGa) for convergence. The supercritical ranges 
given in table 1 appear to be well beyond the limits of the analysis. Taking into 
account the probable non-convergence of our iteration scheme at  large 
(NMa - N k , )  the principal genuine conclusion is that hexagonal cells should be 
the convective pattern observed for a range of Marangoni number extending 
‘considerably’ above critical. We also note that, just as in gravity driven convec- 
tion when fluid property variation is considered, there is only an extremely 
narrow range of N,, in which sufficiently large disturbances grow although linear 
theory predicts stability. 

In order to check the effect of the surface heat transfer coefficient NNu and 
Prandtl number NpT on the coefficients of the amplitude equations a one disturb- 
ance analysis, Y(t)  = 0, to third order with finite NPr, and a two disturbance 
analysis to second order with NNu += 0 and NpT finite were made on the semi- 
infinite model. 
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9 = Z ( t )  cos ay, Ns,? $; 0 and NNu = 0, 

8 = &(NMa-  N k a )  ( 2  + NF;)-', = 0, 

R, = 4(4kt2)-l ( 2  + N~;j ) - l (218Nj$  + 196N$ + 1412). 
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4 = Z ( t )  cos ay + Y ( t )  cos 943  ax cos 4 ay, NNu $; 0 and NPr =+ 0, 

e = i (NMa-Nka)  ( 1  + [NNUa-l + 11 [Nj$ + I])-', 
y = ( 1/33) (7 - 2NI;,1) (NNua-l + 1) ( 1  + [NNUa-l + 11 [ N F ~  + 

It appears that if Npr > 5 and NNu is small compared to the wave-number then 
the simplifying assumptions Npr = 00 and N N U  = 0 will not appreciably affect the 
final results. 

Originally our purpose was first to obtain a qualitative understanding of non- 
linear surface driven convection by a study of the semi-infinite layer and then to 
obtain quantitative results with a computer-aided analysis of a layer of finite 
thickness. It was clear from the outset that the required machine program would 
be very lengthy, so we deemed it all the more important to begin with an analytic 
approach whose results could serve as a check on the machine calculations. 

We recently learned that R. Sani of the University of Illinois is carrying out 
an analysis of the finite depth layer at least as comprehensive as that which we 
contemplated. We therefore will be content with presenting qualitative 
conclusions. With this in mind we turn to the finite depth layer for which we have 
obtained results through second order. While hand computations for the full 
problem are forbidding, the second-order computations are not unduly long and 
were carried out to get some idea as to whether our earlier results would be 
greatly modified and as a further check on future computer programs. 

For the finite layer the depth is used as the scale factor d. The boundary condi- 
tions at  the rigid plate x = - 1 are taken to be w = W, = T = 0. It is assumed that 
NNu = NF,? = 0. As is the case for commonly used fluids, we assume that surface 
deflexion can be neglected (see below). 

The analytic expressions for the coefficients e and y are such long and involved 
functions of a that it was necessary to evaluate them at the critical wave-number 
in order to get an idea of their magnitude. It should be mentioned here that in 
these calculations subtraction of nearly equal numbers seems unavoidable so a 
large number of significant figures must be carried in order to obtain any degree 
of accuracy. 

The marginal stability curve is given by the expression 

NMa = (a3 cosh a - sinh3 a)  ' 

which has a minimum value of N k a  = 80 at approximately a = 2. Letting a, = 2 
we find e = 0.07565(NMa-Nka), y = 0.056108. There is quantitative but no 
qualitative change compared to the results for the semi-infinite layer so we still 
expect hexagonal cells to be a stable flow for a considerable range of supercritical 
Marangoni numbers. 

8a2(a - cosh a sinh a) cosh a 
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Other conclusions from our analysis are that fluid rises at the cell centres as 
observed in experiments and that there is an extremely small range of tempera- 
tures where the quiescent layer is unstable to sufficiently large disturbances 
although small disturbances decay (subcritical instability). 

5. Comments: other papers 
Surface driven flows are encountered in many practical situations involving 

heat and mass transfer for which the BBnard problem is a useful prototype (see 
Scriven & Sternling 1960). For this reason the relevant linear stability theory 
has received much attention recently. It was acknowledged above that Pearson’s 
model was an idealization of a very complex situation. Recent investigators have 
considered more general and realistic surface conditions. 

The most restrictive assumption of Pearson’s model was felt to be that of a 
non-deforming free surface. Sternling & Scriven (1964) allowed the surface to 
deform, accounting for capillary waves but not gravity waves. The case of zero 
wave-number was found to be always unstable and, furthermore, there was no 
critical Marangoni number below which all disturbances decay. These disturbing 
results were clarified by Smith’s (1966) more comprehensive study of surface 
curvature in which both capillary and gravity waves were considered. It was 
shown that gravity has a stabilizing effect at  small a and there was a critical nMU. 
When the surface deformation is small, both studies indicate that Pearson’s 
results are changed only at  very small a and they accurately predict the critical 
conditions. However, if the surface deformation is appreciable, the nature of the 
solution is completely different from Pearson’s. 

Smith also accounted for the dynamics of the upper phase and found that it 
was possible to have instability with respect to heat transfer in either direction, 
a result which Block observed experimentally and which Pearson’s model does 
not allow for. 

Berg & Acrivos (1965) accounted for surface active agents and demonstrated 
their strong stabilizing effect on surface tension induced convection. Adding 
surfactants can increase the critical Nma several orders of magnitude. 

It can be concluded that Pearson’s analysis adequately predicts the critical 
conditions a t  the onset of instability for most experiments with thin layers (1 mm) 
of ordinary liquids. It is also clear that for certain liquids or for very small layer 
depth, a more careful description of the surface mechanism is necessary, 

All non-linear analyses of the BBnard problem have, until now, used Rayleigh’s 
model. It is informative to consider this work here because of the physical and 
mathematical similarities between the two problems. 

The amplitude equations obtained for both problems are of the same form; only 
the value of the coefficients differ. For buoyancy driven convection the linear 
growth rate constant E is proportional to (IfEa - N s u )  where NRa is the Rayleigh 
number. The second-order coefficient y controls the development of the flow. 
Hexagonal cells cannot be a stable flow pattern unless y is non-zero. It has 
been shown (Palm 1960; Segel & Stuart 1962; Davis & Segel 1965) that second- 
order terms do not appear for a buoyancy driven flow unless fluid property varia- 
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tions with temperature (other than linear density variations) or surface deflexion 
are considered. For a layer of finite depth the coefficient y is proportional to the 
usually slight property variation and surface deflexion effect. Segel estimated 
that in the most favourable situations, which require thin fluid layers and/or 
large property variations, hexagonal cells would be stable just a few percent 
above critical. Even when property variations and surface deflexion are accounted 
for, y is zero for the semi-infinite model. Stable hexagonal cells are not possible for 
this limiting case. 

No photographs of truly hexagonal patterns have yet been published for layers 
confined between rigid boundaries, a system in which the flow is buoyancy driven. 
However, such patterns should appear under appropriate experimental condi- 
tions. They have been observed by R. Krishnamurti of UCLA (unpublished) 
when the mean temperature varies slowly. 

Two experimentalists have obtained very regular hexagonal cell patterns, 
B6nard (see Chandrasekhar 1961) and Koschmieder (1966). In  both cases the 
upper surface was free. As we have already remarked, the flows BBnard observed 
were dominated by surface tension. In  Koschmieder’s experiments, although it 
was not easy to determine the location of elevations and depressions, the free 
surface appeared t o  be depressed above rising columns so here, too, surface 
tension dominated. Koschmieder (private communication) did not observe the 
theoretically predicted transition from hexagonal cells to rolls even though he 
increased the applied temperature difference as much as he could (two or three 
times critical). This can be taken as evidence that even our highly idealized model 
captured the essence of the phenomenon, the presence of a hexagonal pattern in 
surface driven convection for a range of temperature gradients large compared 
to the corresponding range for gravity driven convection. 

More experimental checks on the theory are feasible and desirable. 

The principal support for this work came from the Army Research Office 
(Durham). During his f i s t  two years as a graduate student Scanlon was supported 
by a Lever Bros. Fellowship. Some of Segel’s support should be credited to the 
Office of Naval Research (Mechanics Branch). The authors are happy to  acknow- 
ledge this and also some suggestions by E. L. Koschmieder. This work formed 
part of Scanlon’s Ph.D. Thesis, Rensselaer Dept. of Chem. Engineering. 

Existence condition Appendix 

The vector space of our problem is defined by (9) and (lo).  Using this notation 
we can state the existence condition for equation (15) in the following way. Since 
(9 - N>aA?) is a linear homogeneous operator, the inhomogeneous equation 

will have a solution only if Y(U,) is orthogonal to the solution U* of the adjoint 
problem; that is, [U*, Y(U,)] = 0. This requirement fixes the constants in the 
amplitude equation. 
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The adjoint operators and boundary conditions are defined by the requirement 
that for all U whose components satisfy (12) and all U* whose components satisfy 
the adjoint boundary conditions we have 

[ ( 2 - % f u d )  (u), u*] = [u, ( g * - N M u A * )  (u*)l* 
They can be determined by using equation (10) and Green's theorem: 

where alan denotes the derivative in the exterior direction normal to the boundary 
of V.  If the adjoint eigenvector is taken as U* = [w*, T*, w*(z = O ) ]  with the 
condition V: U* + aW* = 0, the adjoint problem is 

V%* + T* 0 [ V2T* ] = N M a [  -v:w,* (z  = 0) 1, 
(TZ+N,,T*) (z  = 0) 

w* = wEz = O a t  z = 0, 

w*, T* and their derivatives bounded as z-+ - co. 

For the semi-infinite model the adjoint solution is 

T* = ea*$(x, y ) ,  

w* = - (8a3)-1 (azz - z )  eaz $(x, y) .  

The boundary conditions at  the plate for the finite depth case are 

w * = w z = T * = O  at ~ ~ - 1 .  

Second-order solution 

The second-order solution U, is determined by solving 

(2-Ewu-,4 (U,) = ( M +  [Nkz-fl%czl-4 (U,) 

with the boundary conditions (12). Referring to U, the inhomogeneous term can 
be written 

0 1 T141 + (WlZTl )  (465 + if$, - *$3 - $4) + (WlTlZ)  ($5 + (64 + (63 + $2) 

- f l%J (W-l$O 
$o = Z ( t )  cos ay + Y ( t )  cos max cos nay,  

4, = Z'(t )  cos ay + Y'(t)  cos max cos nay, 

(62 = $Y2cosay+ YZcosmaxcosnay, 
$3 = $ Y 2  cos 2max + Y Z  cos max cos 3nay, 

$4 = &Z2 cos 2ay + & Y 2  cos 2max cos ay, 

where 

$h5 = &22+tY2, 

m = + &  n =  8. 



Finite amplitude cellular convection 

U, is easily found by the method of undetermined coefficients to be 

w, = D,z ezmaz $3 + D, z e2az $4, 

T2 = C Dp.srzr esas $p 2 

T,P, s 

p = 1,2,3,4,5 r = 0,1,2,3, s = 1,2,2m. 

0 

- p( 427-1 
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Hexagon 

No motion, hexagon 

No motion 

........................................... 

Typical non-zero coefficients are 

D,  = 3(480-m554)/4a2, D, = 7/24a2,  

D,,, = 1/4a5, D3,, = (227 - 960m)/16a". 

The total solution to second order is then U, + U,. 
It can now be seen that the existence condition for U, determines the amplitude 

equations to third order. Therefore it is only necessary to obtain solutions U, 
through second order. The amplitude equations (16) are given by 

[U*, (M + "Ma - Nka]  4 (U1+ U,)l= 0, 

or, neglecting higher order terms, 
m n n  n 

JJJ T*(Tl, + NITl + N1T2 + N2T1) dx dy dz + (NMa - N k a )  J w,* V?T, dxdy = 0 
cell S=O 

Nl = u I . V ,  N, = u,.V. 

Amplitude equations 
The behaviour of solutions to the amplitude equations can be determined by 
making a linear stability analysis around each equilibrium solution. These solu- 
tions are found by obtaining the roots of equations (16) at steady state. The 
linear analysis classifies the equilibrium points as either stable nodes, corre- 
sponding to stable solutions of the original equations with respect to the inter- 
acting disturbances, or unstable nodes or saddle-points which correspond to 
unstable solutions. Since the equilibrium points are the only points where solution 
trajectories can cross, knowledge of the behaviour near these points is usually 

11 Fluid Mech. 30 
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sugcient to determine global behaviour. For a detailed analysis of amplitude 
equations the reader is referred to Segel & Stuart (1962) and Segel (1965a, b).  
Segel’s results for the interaction of N-disturbances of the same overall wave- 
number are summarized in table 2. 
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